首页> 外文OA文献 >Defect Sizing Using Distance-Gain-Size Diagrams for Flat-Bottomed Holes in a Solid: Theoretical Analysis and Experimental Verification
【2h】

Defect Sizing Using Distance-Gain-Size Diagrams for Flat-Bottomed Holes in a Solid: Theoretical Analysis and Experimental Verification

机译:实体中平底孔的使用距离-距离-尺寸图的缺陷尺寸确定:理论分析和实验验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although there are a number of potential pitfalls, the classical method of relating defect area to echo amplitude is still the most widely used method to size defects using ultrasonic pulse-echo techniques. In 1959 Krautkramer [1] was the first to introduce a set of curves (DGS diagrams) showing the variation of echo amplitude with range and target size. As Krautkramer made clear, such curves are dependent on transducer pulse shape. For the very far field he gave theoretical results assuming a fluid-like medium of propagation, but he had to resort to a large number of experimental measurements to construct the near field portion of the curves. Well known problems in using DGS diagrams include the sensitivity of echo amplitudes to target angular and lateral alignment and the need to construct a new set of curves for each transducer pulse shape. Furthermore, when sizing targets in solids there are likely to be errors if curves constructed assuming a fluid medium are used. In 1987, McLaren and Weight [2] gave an impulse-response method to predict echo amplitudes for arbitrary target position in the field and for any transducer pulse shape. Normally-aligned, flat-ended cylindrical targets and a fluid medium were assumed. More recently, Schmerr and Sedov [3,4] have calculated single frequency DGS diagrams for flat-bottomed holes (FBH’s), for both direct and water coupling, but the holes are assumed to be in a fluid-like material. Their method takes account of diffraction and refraction effects but not mode conversion. A more exact treatment of the effect of a solid medium of propagation on DGS diagrams has been given by Sumbatyan and Buyove [5] who developed DGS diagrams for disc-like targets using a boundary element method to solve the elastodynamic equations, but again, only for the case of continuous sinusoidal waves. One disadvantage of such an approach is that the calculations can be rather time consuming.
机译:尽管存在许多潜在的陷阱,但是使用超声脉冲回波技术将缺陷区域与回波幅度相关联的经典方法仍然是使用最广泛的方法来确定缺陷的大小。 1959年,Krautkramer [1]首次引入了一组曲线(DGS图),这些曲线显示了回波幅度随距离和目标尺寸的变化。正如Krautkramer指出的那样,这些曲线取决于换能器脉冲形状。对于非常远的场,他给出了假设流体状传播介质的理论结果,但是他不得不借助大量的实验测量来构建曲线的近场部分。使用DGS图的众所周知的问题包括回波幅度对目标角度和横向对准的敏感性,以及需要为每种换能器脉冲形状构建一组新的曲线。此外,如果使用假定流体介质构造的曲线,在对固体中的目标进行尺寸设定时,可能会出现错误。 1987年,McLaren和Weight [2]提出了一种脉冲响应方法来预测场中任意目标位置和任何换能器脉冲形状的回波幅度。假定为正常对齐的平端圆柱靶和流体介质。最近,Schmerr和Sedov [3,4]计算了平底孔(FBH)的直接频率和水耦合的单频DGS图,但假定这些孔是类似流体的材料。他们的方法考虑了衍射和折射效应,但没有考虑模式转换。 Sumbatyan和Buyove [5]提出了一种更精确的方法来处理固体传播介质对DGS图的影响,他们使用边界元方法为圆盘状目标开发了DGS图,以解决弹性动力学方程,但同样,仅对于连续正弦波的情况。这种方法的一个缺点是计算可能相当耗时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号